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2.4 More properties of holomorphic functions

De�nition 2.27. Let T be a topological space and A a subset. We say that
p ∈ A is an isolated point of A in T i� there exists a neighborhood U ⊆ T
of p such that U ∩ A = {p}. We say that A is discrete in T i� all its points
are isolated.

Theorem 2.28 (Riemann Continuation Theorem). Let D ⊆ C be a region

and A ⊂ D a discrete and relatively closed subset. Suppose that f ∈ O(D\A).
Then, the following assertions are equivalent.

1. f extends to a holomorphic function on D.

2. f extends to a continuous function on D.

3. f is bounded in every neighborhood of any point of A.

4. limz→z0(z − z0)f(z) = 0 for each point z0 ∈ A.

Proof. The implications 1.⇒2.⇒3.⇒4. are clear. It remains to show 4.⇒1.
It is su�cient to consider a single point z0 ∈ A. Moreover, without loss of
generality we may assume z0 = 0. Since 0 is isolated, there exists an open
neighborhood U ⊆ D of 0 such that U ∩ A = {0}. De�ne g : U → C as
follows,

g(z) :=

{
zf(z) if z 6= 0
0 if z = 0

.

By assumption, g is continuous in U . De�ne h : U → C by h(z) := zg(z).
Since g is holomorphic in U \ {0} so is h. Moreover, h(z) = h(0) + zg(z) =
h(0) + o(|z|), so h is complex di�erentiable at 0 with di�erential h′(0) = 0.
Thus, h is actually holomorphic in U . By Theorem 2.22 it can be represented
for some radius of convergence r > 0 as a power series h(z) =

∑∞
n=0 cnzn

around 0. But since h(0) = 0 and h′(0) = 0 we actually have c0 = 0 and c1 =
0 and thus h(z) = z2

∑∞
n=0 cn−2z

n, where the series still converges pointwise
in Br(0). But since h(z) = z2f(z) in U \ {0}, this implies that the power
series

∑∞
n=0 cn−2z

n coincides with f in U ∩ Br(0) \ {0}. Thus, it represents
an analytic (and therefore holomorphic) extension of f to D ∪ {0}.

Theorem 2.29 (Identity Theorem). Let D be a region and f, g ∈ O(D).
The following statements are equivalent:

1. f = g
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2. The coincidence set {z ∈ D|f(z) = g(z)} has an accumulation point in

D.

3. There exists a point z0 ∈ D such that f (n)(z0) = g(n)(z0) for all n ∈ N.

Proof. The implication 1.⇒2. is trivial. We show 2.⇒3. Let h := f − g.
Suppose z0 ∈ D is limit point of the coincidence set {z ∈ D|h(z) = 0}.
Suppose there exists m ∈ N0 such that h(m)(z0) 6= 0 and choose the smallest
such m. Since h is holomorphic in D it is also analytic by Theorem 2.22 and
has a power series expansion around z0 for some radius r > 0, given by

h(z) =
∞∑

n=m

h(n)(z0)
n!

(z − z0)n = (z − z0)mg(z),

where g : Br(0) → C is the analytic function given by the power series,

g(z) =
∞∑

n=0

h(n+m)(z0)
(n + m)!

(z − z0)n.

In particular, g(z0) = h(m)(z0)/m! 6= 0. But continuity of g at z0 implies
that there must be a neighborhood U ⊆ D of z0 such that g(z) 6= 0 for
z ∈ U . But this implies h(z) 6= 0 for z ∈ U \ {z0}, a contradiction to the
assumption that z0 is a limit point of the coincidence set.

We proceed to show the implication 3.⇒1. Set Sn := {z ∈ D|h(n)(z) = 0}
for all n ∈ N0. Then, each Sn is closed in D and so is the intersection
S :=

∩∞
n=0 Sn. On the other hand, S is open since given z1 ∈ S the power

series expansion of h around z1 has non-zero radius r of convergence by
Theorem 2.22, but is identical to zero. So every point z ∈ Br(z1) is element
of S. Thus S is both open and closed in D. Connectedness of D implies
that S is either empty or S = D. The �rst possibility is excluded by the
assumption that z0 ∈ S. So the power series of h is zero around any point
of D, hence h = 0, implying f = g in D.

Corollary 2.30. Let I ⊆ R be an interval and f : I → C some function.

For any region D ⊆ C such that I ⊂ D there is at most one holomorphic

function g : D → C such that f(z) = g(z) for all z ∈ I.

This is relevant when we are interested in extending functions on R or
some interval I ⊂ R to holomorphic functions on the complex plane.

Proposition 2.31 (Cauchy's Estimates). Let D ⊆ C be a region, f ∈ O(D),
z ∈ D and r > 0 such that Br(z) ⊂ D. Then,

|f (n)(z)| ≤
n!‖f‖∂Br(z)

rn
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Proof. This follows by applying Proposition 2.7 to the formula of Theo-
rem 2.22.

Lemma 2.32 (Gutzmer Formula). Let z0 ∈ C and r > 0, and suppose the

power series

f(z) =
∞∑

n=0

cn(z − z0)n

has radius of convergence greater than r. Set M(r) := supz∈∂Br(z0) |f(z)|.
Then,

∞∑
n=0

|cn|2r2n =
1
2π

∫ 2π

0

∣∣∣f(z0 + reiθ)
∣∣∣2 dθ ≤ M(r)2.

Proof. By Theorem 2.22 we have

cn =
f (n)(z0)

n!
=

1
2πi

∫ 2π

0

f(z0 + reiθ)
(reiθ)n+1

ireiθ dθ.

Equivalently,

cnrn =
1
2π

∫ 2π

0
f(z0 + reiθ)e−inθ dθ.

Since

f(z0 + reiθ) =
∞∑

n=0

cnrne−inθ

we have, ∣∣∣f(z0 + reiθ)
∣∣∣2 =

∞∑
n=0

cnrnf(z0 + reiθ)e−inθ,

where the series converges uniformly as a series of functions on θ ∈ [0, 2π].
Thus, we can interchange integration and summation yielding,∫ 2π

0

∣∣∣f(z0 + reiθ)
∣∣∣2 dθ =

∞∑
n=0

cnrn

∫ 2π

0
f(z0 +reiθ)e−inθ dθ = 2π

∞∑
n=0

|cn|2r2n.

This shows the claimed equality. The stated inequality is obtained by the
standard estimate of the integral.

Theorem 2.33 (Maximum Modulus Principle). Let D ⊆ C be a region and

f ∈ O(D). Suppose that |f | has a local maximum at some point z ∈ D, i.e.,

that |f(z)| = ‖f‖U := supζ∈U |f(ζ)| for some neighborhood U ⊆ D of z, then
f is constant.
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Proof. Given a point z ∈ D and a neighborhood U of z as described, consider
the power series expansion f(ζ) =

∑∞
n=0 cn(ζ −z)n of f around z. Let ρ > 0

such that Bρ(z) ⊆ U . Then, the power series converges with radius at least
ρ and for 0 < r < ρ we have, by Lemma 2.32,

∞∑
n=0

|cn|2r2n ≤ M(r)2 ≤ ‖f‖2
U = |f(z)|2 = |c0|2.

This implies ck = 0 for all k ∈ N, i.e., f is constant in Bρ(z). But then the
Identity Theorem (Theorem 2.29) ensures that f is constant in all of D.

Proposition 2.34. Let D ⊆ C be a bounded region and K its closure. Sup-

pose f : K → C is continuous and its restriction to D is holomorphic. Then,

|f(z)| ≤ ‖f‖∂D ∀z ∈ D.

In case of equality for some z ∈ D, f is constant.

Proof. If f is constant the inequality is an equality and is valid trivially.
Thus, suppose that f is not constant. Since K is compact and f is continuous
on K there exists a point z ∈ K such that |f(z)| = ‖f‖K . We have to show
that necessarily z ∈ ∂D = K \D. Assume to the contrary that z ∈ D. Since
|f(z)| = ‖f‖K = ‖f‖D we can apply Theorem 2.33 with U = D, concluding
that f is constant, a contradiction.

Theorem 2.35 (Liouville Theorem). Every bounded entire function is con-

stant.

Proof. Let f ∈ O(C) be bounded by M , i.e., |f(z)| ≤ M for all z ∈ C.
Since f is analytic in C and its power series f(z) =

∑∞
n=0 cnzn around 0

has in�nite radius of convergence. Thus, for a radius r > 0 we have from
Lemma 2.32 the estimate,

∞∑
n=0

|cn|2r2n ≤ M(r)2 ≤ M2.

Since r can be arbitrarily large, this implies ck = 0 for all k ∈ N.

Exercise 19. Let D ⊆ C a region, a ∈ D. Suppose that f ∈ O(D \ {a}).
Show that f has a holomorphic extension to D if f ′ has.
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Exercise 20. Suppose f is an entire function which satis�es

|f(z)| ≤ a + b|z|c ∀z ∈ C,

where a, b, c are positive constants. Show that f is a polynomial of degree
less than or equal to c.

Exercise 21. Let f be an entire function. Show that the Taylor series of f
at 0 converges uniformly in all of C if an only if f is a polynomial.

Exercise 22. Let f, g be entire functions satisfying |f(z)| ≤ |g(z)| for all
z ∈ C. Show that there is a ∈ C such that f = ag.

Exercise 23. Let D ⊆ C be a region and L ⊂ C be a straight line. Let
f : D → C be continuous and f holomorphic in D \ L. Show that f is
actually holomorphic in all of D.

Exercise 24. Let D ⊆ C be a region and f ∈ O(D). Suppose that there
exists z ∈ D such that f (n)(z) = 0 for almost all n ∈ N. Show that f is a
polynomial.

Exercise 25. Let D ⊆ C be a region such that if z ∈ D then z ∈ D. Show
that for f ∈ O(D) the following statements are equivalent:

1. f(D ∩ R) ⊆ R.

2. f(z) = f(z) for all z ∈ D.

Exercise 26. For each of the following properties give an example for a
holomorphic function de�ned in some disk around 0 with that property or
show that there can be no such function.

1. f(1/n) = (−1)n/n for almost all n ∈ N.

2. f(1/n) = 1/(n2 − 1) for almost all n ∈ N \ {1}.

3. |f (n)(0)| ≥ (n!)2 for almost all n ∈ N0.

4. |f(1/n)| ≤ e−n for almost all n ∈ N and f 6= 0.



6 Robert Oeckl � CA NOTES 4 � 01/10/2009

2.5 The Open Mapping Theorem

De�nition 2.36. Let X, Y be topological spaces. A map f : X → Y is
called open i� for every open set U ⊆ X the image f(U) is open in Y .

Proposition 2.37 (Minimum Principle). Let D ⊆ C be a region and f ∈
O(D). Suppose that |f | has a local minimum at some point z ∈ D, i.e., that

|f(z)| = infζ∈U |f(ζ)| for some neighborhood U ⊆ D of z. Then, f(z) = 0
or f is constant in D.

Proof. Let z ∈ D be a local minimum and U a neighborhood of z as de-
scribed. Without loss of generality we may assume that U is connected, i.e.
a region. If f(z) = 0 we are done. Thus, suppose f(z) 6= 0. Since z is local
minimum of |f | in U , f(ζ) 6= 0 for all ζ ∈ U . So, 1/f ∈ O(U). But |1/f | has
a local maximum at z and we may apply Theorem 2.33 to conclude that 1/f
is constant in U . But then f is constant in U and by Theorem 2.29 constant
in D.

Proposition 2.38. Let D ⊆ C be a bounded region and K its closure. Sup-

pose f : K → C is continuous and its restriction to D is holomorphic. Then,

either f has zeros in D or

|f(z)| ≥ inf
ζ∈∂D

|f(ζ)| ∀z ∈ D.

Proof. Exercise.

Lemma 2.39. Let D ⊆ C be a region and f ∈ O(D). Let z ∈ D and

r > 0 such that Br(z) ⊂ D and 2δ := infζ∈∂Br(z) |f(ζ) − f(z)| > 0. Then,

Bδ(f(z)) ⊆ f(Br(z)).

Proof. Let a ∈ Bδ(f(z)). Then,

|f(ζ) − a| ≥ |f(ζ) − f(z)| − |a − f(z)| > δ ∀ζ ∈ ∂Br(z).

In particular, infζ∈∂Br(z) |f(ζ) − a| > |f(z) − a|. Thus, by Proposition 2.38
f − a must have zeros in the region Br(z). That is, there exists ξ ∈ Br(z)
such that f(ξ) = a.

Theorem 2.40 (Open Mapping Theorem). Let D ⊆ C be a region and

f ∈ O(D) such that f is not constant. Then f is an open map D → C.

Proof. Let U ⊆ D be open. Let z ∈ U . It is enough to show that f(U)
contains a disc centered around f(z). Since f is not constant, by the Identity
Theorem (Theorem 2.29) there is a radius r > 0 such that f(z) /∈ f(∂Br(z))
while Br(z) ⊆ U . Then 2δ := infζ∈∂Br(z) |f(ζ) − f(z)| > 0 and Lemma 2.39
can be applied, showing that Bδ(f(z)) ⊆ f(Br(z)) ⊆ f(U).
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2.6 General Cauchy Theory

We have already seen that the index Indγ(z) of a point z with respect to
a path γ is zero, if z lies in the connected component of C \ |γ| which is
unbounded. This motivates the following de�nition.

De�nition 2.41. Let γ be a closed path in C. We de�ne the interior of γ
as the subset Intγ := {z ∈ C \ |γ| : Indγ(z) 6= 0}. Similarly, we de�ne the
exterior of γ as the subset Extγ := {z ∈ C \ |γ| : Indγ(z) = 0}.

Obviously, we have the disjoint union C = Intγ ∪ |γ| ∪ Extγ .

Lemma 2.42. Let D ⊆ C be a region and γ a closed path in D. Suppose

g : |γ|×D → C is a continuous function such that z 7→ g(ζ, z) is holomorphic

for all ζ ∈ |γ|. Then, the function h : D → C given by

h(z) :=
∫

γ
g(ζ, z) dζ

is holomorphic.

Proof. Fix z ∈ D. Let U ⊆ D be a star-shaped neighborhood of z with
center z (e.g. a disc centered at z). Then, for all ζ ∈ |γ| and all paths γ̃ in
U we have, ∫

γ̃
g(ζ, z) dz = 0,

by Proposition 2.11 since z 7→ g(ζ, z) is holomorphic and thus integrable in
U by Corollary 2.15. But we can interchange the order of integration by
Fubini's Theorem to get∫

γ̃
h(z) dz =

∫
γ̃

(∫
γ
g(ζ, z) dζ

)
dz =

∫
γ

(∫
γ̃
g(ζ, z) dz

)
dζ = 0.

Thus, h is integrable in U by Proposition 2.11 and therefore holomorphic in
U by Corollary 2.23. Since z was arbitrary, h is holomorphic in D.

Theorem 2.43. Let D ⊆ C be a region and γ a closed path in D. Then,

the following conditions are equivalent:

1. All f ∈ O(D) satisfy ∫
γ
f = 0.
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2. For every f ∈ O(D) and every z ∈ D \ |γ| we have,

f(z)Indγ(z) =
1

2πi

∫
γ

f(ζ)
ζ − z

dζ.

3. Intγ ⊂ D.

Proof. To show 2.⇒1. for a given f ∈ O(D), choose z ∈ D \ |γ| arbitrarily
and de�ne h ∈ O(D) via h(ζ) := (ζ − z)f(ζ). Applying the formula of 2. to
h yields 1. since h(z) = 0 by construction.

We proceed to show 1.⇒3. If D = C there is nothing to demonstrate.
So assume the contrary and let z0 ∈ C \ D. We have to demonstrate that
Indγ(z0) = 0. De�ne f ∈ O(D) via f(z) := (z − z0)−1. By 1.,

0 =
∫

γ
f = 2πi Indγ(z0).

It remains to demonstrate 3.⇒2. De�ne the function g : D × D → C as
follows,

g(ζ, z) :=

{
f(ζ)−f(z)

ζ−z if ζ 6= z

f ′(z) if ζ = z
.

We proceed to show that g is continuous. For (ζ, z) ∈ D×D such that ζ 6= z
this is immediate. Thus, consider the case ζ = z and �x z ∈ D. Let r > 0
such that Br(z) ⊂ D. Consider the power series expansion of f around z,

f(ζ) =
∞∑

n=0

cn(ζ − z)n,

for all ζ ∈ Br(z). Then, for ζ, ξ ∈ Br(z),

g(ζ, ξ) = f ′(z) +
∞∑

n=2

cn

n∑
k=1

(ζ − z)n−k(ξ − z)k−1.

For ζ, ξ ∈ Bρ(z) with 0 < ρ < r we have thus the estimate,

|g(ζ, ξ) − g(z, z)| ≤

∣∣∣∣∣
∞∑

n=2

cn

n∑
k=1

(ζ − z)n−k(ξ − z)k−1

∣∣∣∣∣ ≤
∞∑

n=2

n|cn|ρn−1.

However, the series on the right hand side converges for all ρ < r to a
continuous function which goes to 0 when ρ → 0. Thus, g is continuous
at (z, z). Since z was arbitrary in D this completes the proof that g is



Robert Oeckl � CA NOTES 4 � 01/10/2009 9

continuous in D × D. Now we apply Lemma 2.42 to conclude that the
function h : D → C de�ned by

h(z) :=
∫

γ
g(ζ, z) dζ

is holomorphic in D.
Now observe that for z ∈ D we have

h(z) =
∫

γ
g(ζ, z) dζ = −2πi f(z)Indγ(z) +

∫
γ

f(ζ)
ζ − z

dζ.

Thus, to show 2. we need to show that h = 0. But if z ∈ D ∩ Extγ, then
Indγ(z) = 0 and we get

h(z) =
∫

γ

f(ζ)
ζ − z

dζ.

However, this formula actually de�nes a holomorphic function in all of Extγ
by Lemma 2.21. Thus, we use it to extend h to a holomorphic function on
the open set D ∪ Extγ. Now recall that the assumption is that Intγ ⊂ D.
But this means D∪Extγ = C, i.e. h is entire. Exercise.Complete the proof.
[Hint: Use Liouville's Theorem].


