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2.4 More properties of holomorphic functions

Definition 2.27. Let T be a topological space and A a subset. We say that
p € A is an isolated point of A in T iff there exists a neighborhood U C T
of p such that U N A = {p}. We say that A is discrete in T iff all its points
are isolated.

Theorem 2.28 (Riemann Continuation Theorem). Let D C C be a region
and A C D a discrete and relatively closed subset. Suppose that f € O(D\A).
Then, the following assertions are equivalent.

1. f extends to a holomorphic function on D.

2. f extends to a continuous function on D.

3. f is bounded in every neighborhood of any point of A.
4. lim,_,, (2 — 20) f(2) = 0 for each point zg € A.

Proof. The implications 1.=2.=3.=4. are clear. It remains to show 4.=1.
It is sufficient to consider a single point zg € A. Moreover, without loss of
generality we may assume 29 = 0. Since 0 is isolated, there exists an open
neighborhood U C D of 0 such that U N A = {0}. Define g : U — C as
follows,

o(z) = {zf(z) ifz#0

0 ifz=0

By assumption, g is continuous in U. Define h : U — C by h(z) := zg(z).
Since g is holomorphic in U \ {0} so is h. Moreover, h(z) = h(0) 4+ zg(z) =
h(0) 4+ o(|z|), so h is complex differentiable at 0 with differential A’(0) = 0.
Thus, h is actually holomorphic in U. By Theorem 2.22 it can be represented
for some radius of convergence r > 0 as a power series h(z) = Y 7 cp2"
around 0. But since A(0) = 0 and h’/(0) = 0 we actually have ¢o = 0 and ¢; =
0 and thus h(z) = 2> Yool o cn—22", where the series still converges pointwise
in B,(0). But since h(z) = 22f(2) in U \ {0}, this implies that the power
series Y7 cp—22™ coincides with f in U N B,.(0) \ {0}. Thus, it represents
an analytic (and therefore holomorphic) extension of f to D U {0}. O

Theorem 2.29 (Identity Theorem). Let D be a region and f,g € O(D).
The following statements are equivalent:

1 f=g
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2. The coincidence set {z € D|f(z) = g(z)} has an accumulation point in
D.

3. There exists a point zy € D such that f(z9) = ¢ (20) for alln € N.

Proof. The implication 1.=2. is trivial. We show 2.=3. Let h := f — g.
Suppose zp € D is limit point of the coincidence set {z € D|h(z) = 0}.
Suppose there exists m € Ny such that h(m)(ZQ) # 0 and choose the smallest
such m. Since h is holomorphic in D it is also analytic by Theorem 2.22 and
has a power series expansion around zp for some radius r» > 0, given by

(),
n) =3 ) = o)),

n!

n=m

where g : B-(0) — C is the analytic function given by the power series,

> p(nt+m) (ZO)

ey )"

9(2) =

n=0

In particular, g(z0) = h{™(z0)/m! # 0. But continuity of g at 2z implies

that there must be a neighborhood U C D of zy such that g(z) # 0 for

z € U. But this implies h(z) # 0 for z € U \ {20}, a contradiction to the
assumption that zg is a limit point of the coincidence set.

We proceed to show the implication 3.=1. Set S, := {z € D|h("(z) = 0}
for all n € Ny. Then, each S, is closed in D and so is the intersection
S = (o2 Sn- On the other hand, S is open since given z; € S the power
series expansion of h around z; has non-zero radius r of convergence by
Theorem 2.22, but is identical to zero. So every point z € B,(z1) is element
of S. Thus S is both open and closed in D. Connectedness of D implies
that S is either empty or S = D. The first possibility is excluded by the
assumption that zg € S. So the power series of h is zero around any point
of D, hence h = 0, implying f =g in D. O

Corollary 2.30. Let I C R be an interval and f : I — C some function.
For any region D C C such that I C D there is at most one holomorphic
function g : D — C such that f(z) = g(2) for all z € I.

This is relevant when we are interested in extending functions on R or
some interval I C R to holomorphic functions on the complex plane.

Proposition 2.31 (Cauchy’s Estimates). Let D C C be a region, f € O(D),
z € D and r > 0 such that B,(z) C D. Then,

1F™(z)] <

n!| flla, )
TTL
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Proof. This follows by applying Proposition 2.7 to the formula of Theo-
rem 2.22. ]

Lemma 2.32 (Gutzmer Formula). Let zo € C and r > 0, and suppose the

power Series
oo
n
= g en(z — 20)
n=0

has radius of convergence greater than r. Set M(r) := sup.cap, (z) |f(2)]-
Then,
o 1 2w 2
E len |22 = / f(zo0 + 1"610)‘ df < M(r)?.
2 0

n=0
Proof. By Theorem 2.22 we have

F™(z0) 1 [ fao+re).

i0
Cp = = - re’ dé.
" n! 27 Jo (reif)ntl
Equivalently,
1 2w . .
e’ = — f(z0 + re?)e ™ do.
271' 0
Since
Flz0 + reif) = chr e~ im0
we have,

o2 . :
)f(zo + rele)’ = Z@r”f(zo + relf)e im0

where the series converges uniformly as a series of functions on 6 € [0, 27].
Thus, we can interchange integration and summation yielding,

/27r
0

This shows the claimed equality. The stated inequality is obtained by the
standard estimate of the integral. O

f(z0+re?) ’ dQ_chr f z+ref)e _i"9d0:27r2\cn\2r2”.
n=0

Theorem 2.33 (Maximum Modulus Principle). Let D C C be a region and
f € O(D). Suppose that |f| has a local mazimum at some point z € D, i.e.,
that | f(2)| = || fllu := supcey | ()] for some neighborhood U C D of 2, then
f is constant.
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Proof. Given a point z € D and a neighborhood U of z as described, consider
o0

the power series expansion f(¢) =) .~ ;cn((—2)" of f around z. Let p > 0

such that B,(z) C U. Then, the power series converges with radius at least
p and for 0 < r < p we have, by Lemma 2.32,

D lenlPr® < M(r)? < || £ = £ () = |eof*.
n=0

This implies ¢, = 0 for all k € N, i.e., f is constant in B,(z). But then the
Identity Theorem (Theorem 2.29) ensures that f is constant in all of D. [

Proposition 2.34. Let D C C be a bounded region and K its closure. Sup-
pose f: K — C is continuous and its restriction to D is holomorphic. Then,

lf(2) < |fllop Vz € D.

In case of equality for some z € D, f is constant.

Proof. If f is constant the inequality is an equality and is valid trivially.
Thus, suppose that f is not constant. Since K is compact and f is continuous
on K there exists a point z € K such that |f(z)| = ||f]|x. We have to show
that necessarily z € 9D = K\ D. Assume to the contrary that z € D. Since
lf(2) = IIfllx = ||f|lp we can apply Theorem 2.33 with U = D, concluding
that f is constant, a contradiction. O

Theorem 2.35 (Liouville Theorem). Every bounded entire function is con-
stant.

Proof. Let f € O(C) be bounded by M, ie., [f(z)] < M for all z € C.
Since f is analytic in C and its power series f(z) = > 2 ¢,2" around 0
has infinite radius of convergence. Thus, for a radius r > 0 we have from
Lemma 2.32 the estimate,

o
Z ]cn]27“2" < M(r)2 < M2,
n=0

Since r can be arbitrarily large, this implies ¢y = 0 for all £ € N. O

Exercise 19. Let D C C a region, a € D. Suppose that f € O(D \ {a}).
Show that f has a holomorphic extension to D if f has.
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Exercise 20. Suppose f is an entire function which satisfies
|f(2)] <a+blz|°Vz € C,

where a, b, ¢ are positive constants. Show that f is a polynomial of degree
less than or equal to c.

Exercise 21. Let f be an entire function. Show that the Taylor series of f
at 0 converges uniformly in all of C if an only if f is a polynomial.

Exercise 22. Let f,g be entire functions satisfying |f(2)| < |g(z)| for all
z € C. Show that there is a € C such that f = ag.

Exercise 23. Let D C C be a region and L C C be a straight line. Let
f : D — C be continuous and f holomorphic in D \ L. Show that f is
actually holomorphic in all of D.

Exercise 24. Let D C C be a region and f € O(D). Suppose that there
exists z € D such that f(™(z) = 0 for almost all n € N. Show that f is a
polynomial.

Exercise 25. Let D C C be a region such that if z € D then Z € D. Show
that for f € O(D) the following statements are equivalent:

1. f(DNR)CR.

2. f(2) = f(z) for all z € D.
Exercise 26. For each of the following properties give an example for a
holomorphic function defined in some disk around O with that property or
show that there can be no such function.

1. f(1/n) = (—1)"/n for almost all n € N.

2. f(1/n) =1/(n? —1) for almost all n € N\ {1}.

3. [f™(0)| > (n!)? for almost all n € N.

4. |f(1/n)] < e ™ for almost all n € N and f # 0.
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2.5 The Open Mapping Theorem

Definition 2.36. Let X,Y be topological spaces. A map f: X — Y is
called open iff for every open set U C X the image f(U) is open in Y.

Proposition 2.37 (Minimum Principle). Let D C C be a region and f €
O(D). Suppose that |f| has a local minimum at some point z € D, i.e., that
|f(2)| = infeer | f(C)| for some neighborhood U C D of z. Then, f(z) =0

or f is constant in D.

Proof. Let z € D be a local minimum and U a neighborhood of 2z as de-
scribed. Without loss of generality we may assume that U is connected, i.e.
a region. If f(z) = 0 we are done. Thus, suppose f(z) # 0. Since z is local
minimum of |f|in U, f({) #0forall { € U. So, 1/f € O(U). But |1/ f| has
a local maximum at z and we may apply Theorem 2.33 to conclude that 1/ f
is constant in U. But then f is constant in U and by Theorem 2.29 constant
in D. O

Proposition 2.38. Let D C C be a bounded region and K its closure. Sup-
pose f : K — C is continuous and its restriction to D is holomorphic. Then,
either f has zeros in D or

> i .
|f(2)] > C1er(13fD|f(C)| Vze D
Proof. Exercise. -

Lemma 2.39. Let D
r > 0 such that B(z)

Bs(f(2)) € f(Br(2))-
Proof. Let a € Bs(f(z)). Then,

£ —al 2 [f(O) = f(2)| = la=f(2)| > 6 V(e IB(2)

In particular, infeepp, (2) | f(¢) — al > [f(2) — a|. Thus, by Proposition 2.38
f — a must have zeros in the region B,(z). That is, there exists £ € B,(2)
such that f(£) = a. O

C be a region and f € O(D). Let z € D and
D and 26 := infecpp, (o) |f(C) — f(2)] > 0. Then,

-
C

Theorem 2.40 (Open Mapping Theorem). Let D C C be a region and
f € O(D) such that f is not constant. Then f is an open map D — C.

Proof. Let U C D be open. Let z € U. It is enough to show that f(U)
contains a disc centered around f(z). Since f is not constant, by the Identity
Theorem (Theorem 2.29) there is a radius r > 0 such that f(z) ¢ f(0B,(2))
while B,.(z) C U. Then 20 := infecop, (2 [f(¢) — f(2)| > 0 and Lemma 2.39
can be applied, showing that Bs(f(z)) C f(Br(z)) C f(U). O
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2.6 General Cauchy Theory

We have already seen that the index Ind,(z) of a point z with respect to
a path v is zero, if z lies in the connected component of C \ |y| which is
unbounded. This motivates the following definition.

Definition 2.41. Let v be a closed path in C. We define the interior of v
as the subset Int := {z € C\ |7| : Ind,(z) # 0}. Similarly, we define the
exterior of v as the subset Ext,, := {z € C\ |y| : Ind,(2) = 0}.

Obviously, we have the disjoint union C = Int,, U |y| U Ext,,.

Lemma 2.42. Let D C C be a region and v a closed path in D. Suppose
g : |y xD — C is a continuous function such that z — g((, z) is holomorphic
for all ¢ € |y|. Then, the function h: D — C given by

h(z) = / 9(C,2) d¢

v

18 holomorphic.

Proof. Fix z € D. Let U C D be a star-shaped neighborhood of z with
center z (e.g. a disc centered at z). Then, for all ¢ € |y| and all paths 7 in
U we have,

[otc.ardz =0

5

by Proposition 2.11 since z — ¢((, z) is holomorphic and thus integrable in
U by Corollary 2.15. But we can interchange the order of integration by
Fubini’s Theorem to get

/ﬁh(@dz-/ﬁ(/yg(C,Z)dC) dz_/y<ég(<,z)dz) dc = 0.

Thus, A is integrable in U by Proposition 2.11 and therefore holomorphic in
U by Corollary 2.23. Since z was arbitrary, h is holomorphic in D. O

Theorem 2.43. Let D C C be a region and v a closed path in D. Then,
the following conditions are equivalent:

Af:o.

1. All f € O(D) satisfy
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2. For every f € O(D) and every z € D \ |y| we have,

rema, ) = oo [ 1 ac
Y

3. Int, C D.

Proof. To show 2.=1. for a given f € O(D), choose z € D \ || arbitrarily
and define h € O(D) via h(¢) := (¢ — 2) f(¢). Applying the formula of 2. to
h yields 1. since h(z) = 0 by construction.

We proceed to show 1.=3. If D = C there is nothing to demonstrate.
So assume the contrary and let zgp € C\ D. We have to demonstrate that
Ind,(20) = 0. Define f € O(D) via f(z) := (2 — 20) . By 1.,

0= / f = 2rilnd,(20).
gl
It remains to demonstrate 3.=2. Define the function g : D x D — C as

follows,
F(O=f(2) ¢ £ 2
9(¢2) =19, 7. :
f'(2) if{ =z
We proceed to show that g is continuous. For ((, z) € D x D such that { # z

this is immediate. Thus, consider the case ( = z and fix 2 € D. Let r > 0
such that B,(z) C D. Consider the power series expansion of f around z,

o)

FQ =D enlC—2)",

n=0

for all ( € B,(z). Then, for (,¢ € B,(2),

9GO =F(2)+ > en > (C—2)" R -2k
k=1

n=2 —

For (,¢ € By(z) with 0 < p < r we have thus the estimate,

19(¢,6) = 9(z2)| <D end (C=2)"F(E=2)" 1 <D nlealp”
1

n=2 k= n=2

However, the series on the right hand side converges for all p < r to a
continuous function which goes to 0 when p — 0. Thus, g is continuous
at (z,z). Since z was arbitrary in D this completes the proof that ¢ is
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continuous in D x D. Now we apply Lemma 2.42 to conclude that the
function h : D — C defined by

hz) = / 9(C,2) d¢
Y

is holomorphic in D.
Now observe that for z € D we have

h(z) = /g((,z) d¢ = —2mi f(2)Ind,(2) +/ (O d¢.

vC—2

Thus, to show 2. we need to show that h = 0. But if 2 € D N Exty, then

Ind,(z) = 0 and we get
_ [ f©)
h(z)—fyg_zd(.

However, this formula actually defines a holomorphic function in all of Ext~y
by Lemma 2.21. Thus, we use it to extend h to a holomorphic function on
the open set D U Exty. Now recall that the assumption is that Inty C D.
But this means DUExty = C, i.e. h is entire. Exercise.Complete the proof.
[Hint: Use Liouville’s Theorem]. O




