2.4 More properties of holomorphic functions

Definition 2.27. Let T be a topological space and A a subset. We say that $p \in A$ is an *isolated point* of A in T iff there exists a neighborhood $U \subseteq T$ of p such that $U \cap A = \{p\}$. We say that A is *discrete* in T iff all its points are isolated.

Theorem 2.28 (Riemann Continuation Theorem). Let $D \subseteq \mathbb{C}$ be a region and $A \subset D$ a discrete and relatively closed subset. Suppose that $f \in \mathcal{O}(D \setminus A)$. Then, the following assertions are equivalent.

- 1. f extends to a holomorphic function on D.
- 2. f extends to a continuous function on D.
- 3. f is bounded in every neighborhood of any point of A.
- 4. $\lim_{z\to z_0} (z-z_0)f(z) = 0$ for each point $z_0 \in A$.

Proof. The implications $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4$. are clear. It remains to show $4 \Rightarrow 1$. It is sufficient to consider a single point $z_0 \in A$. Moreover, without loss of generality we may assume $z_0 = 0$. Since 0 is isolated, there exists an open neighborhood $U \subseteq D$ of 0 such that $U \cap A = \{0\}$. Define $g: U \to \mathbb{C}$ as follows,

$$g(z) := \begin{cases} zf(z) & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

By assumption, g is continuous in U. Define $h: U \to \mathbb{C}$ by h(z) := zg(z). Since g is holomorphic in $U \setminus \{0\}$ so is h. Moreover, h(z) = h(0) + zg(z) = h(0) + o(|z|), so h is complex differentiable at 0 with differential h'(0) = 0. Thus, h is actually holomorphic in U. By Theorem 2.22 it can be represented for some radius of convergence r > 0 as a power series $h(z) = \sum_{n=0}^{\infty} c_n z^n$ around 0. But since h(0) = 0 and h'(0) = 0 we actually have $c_0 = 0$ and $c_1 = 0$ and thus $h(z) = z^2 \sum_{n=0}^{\infty} c_{n-2} z^n$, where the series still converges pointwise in $B_r(0)$. But since $h(z) = z^2 f(z)$ in $U \setminus \{0\}$, this implies that the power series $\sum_{n=0}^{\infty} c_{n-2} z^n$ coincides with f in $U \cap B_r(0) \setminus \{0\}$. Thus, it represents an analytic (and therefore holomorphic) extension of f to $D \cup \{0\}$.

Theorem 2.29 (Identity Theorem). Let D be a region and $f, g \in \mathcal{O}(D)$. The following statements are equivalent:

1. f = g

2. The coincidence set $\{z \in D | f(z) = g(z)\}$ has an accumulation point in D.

3. There exists a point $z_0 \in D$ such that $f^{(n)}(z_0) = g^{(n)}(z_0)$ for all $n \in \mathbb{N}$.

Proof. The implication $1.\Rightarrow 2$. is trivial. We show $2.\Rightarrow 3$. Let h := f - g. Suppose $z_0 \in D$ is limit point of the coincidence set $\{z \in D | h(z) = 0\}$. Suppose there exists $m \in \mathbb{N}_0$ such that $h^{(m)}(z_0) \neq 0$ and choose the smallest such m. Since h is holomorphic in D it is also analytic by Theorem 2.22 and has a power series expansion around z_0 for some radius r > 0, given by

$$h(z) = \sum_{n=m}^{\infty} \frac{h^{(n)}(z_0)}{n!} (z - z_0)^n = (z - z_0)^m g(z),$$

where $g: B_r(0) \to \mathbb{C}$ is the analytic function given by the power series,

$$g(z) = \sum_{n=0}^{\infty} \frac{h^{(n+m)}(z_0)}{(n+m)!} (z-z_0)^n$$

In particular, $g(z_0) = h^{(m)}(z_0)/m! \neq 0$. But continuity of g at z_0 implies that there must be a neighborhood $U \subseteq D$ of z_0 such that $g(z) \neq 0$ for $z \in U$. But this implies $h(z) \neq 0$ for $z \in U \setminus \{z_0\}$, a contradiction to the assumption that z_0 is a limit point of the coincidence set.

We proceed to show the implication $3.\Rightarrow 1$. Set $S_n := \{z \in D | h^{(n)}(z) = 0\}$ for all $n \in \mathbb{N}_0$. Then, each S_n is closed in D and so is the intersection $S := \bigcap_{n=0}^{\infty} S_n$. On the other hand, S is open since given $z_1 \in S$ the power series expansion of h around z_1 has non-zero radius r of convergence by Theorem 2.22, but is identical to zero. So every point $z \in B_r(z_1)$ is element of S. Thus S is both open and closed in D. Connectedness of D implies that S is either empty or S = D. The first possibility is excluded by the assumption that $z_0 \in S$. So the power series of h is zero around any point of D, hence h = 0, implying f = g in D.

Corollary 2.30. Let $I \subseteq \mathbb{R}$ be an interval and $f : I \to \mathbb{C}$ some function. For any region $D \subseteq \mathbb{C}$ such that $I \subset D$ there is at most one holomorphic function $g: D \to \mathbb{C}$ such that f(z) = g(z) for all $z \in I$.

This is relevant when we are interested in extending functions on \mathbb{R} or some interval $I \subset \mathbb{R}$ to holomorphic functions on the complex plane.

Proposition 2.31 (Cauchy's Estimates). Let $D \subseteq \mathbb{C}$ be a region, $f \in \mathcal{O}(D)$, $z \in D$ and r > 0 such that $\overline{B_r(z)} \subset D$. Then,

$$|f^{(n)}(z)| \le \frac{n! ||f||_{\partial B_r(z)}}{r^n}$$

Robert Oeckl – CA NOTES 4 - 01/10/2009

Proof. This follows by applying Proposition 2.7 to the formula of Theorem 2.22. \Box

Lemma 2.32 (Gutzmer Formula). Let $z_0 \in \mathbb{C}$ and r > 0, and suppose the power series

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$

has radius of convergence greater than r. Set $M(r) := \sup_{z \in \partial B_r(z_0)} |f(z)|$. Then,

$$\sum_{n=0}^{\infty} |c_n|^2 r^{2n} = \frac{1}{2\pi} \int_0^{2\pi} \left| f(z_0 + re^{i\theta}) \right|^2 d\theta \le M(r)^2.$$

Proof. By Theorem 2.22 we have

$$c_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{(re^{i\theta})^{n+1}} ire^{i\theta} d\theta.$$

Equivalently,

$$c_n r^n = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + r e^{\mathbf{i}\theta}) e^{-\mathbf{i}n\theta} \,\mathrm{d}\theta.$$

Since

$$\overline{f(z_0 + re^{i\theta})} = \sum_{n=0}^{\infty} \overline{c_n} r^n e^{-in\theta}$$

we have,

$$\left|f(z_0 + re^{i\theta})\right|^2 = \sum_{n=0}^{\infty} \overline{c_n} r^n f(z_0 + re^{i\theta}) e^{-in\theta},$$

where the series converges uniformly as a series of functions on $\theta \in [0, 2\pi]$. Thus, we can interchange integration and summation yielding,

$$\int_{0}^{2\pi} \left| f(z_0 + re^{i\theta}) \right|^2 d\theta = \sum_{n=0}^{\infty} \overline{c_n} r^n \int_{0}^{2\pi} f(z_0 + re^{i\theta}) e^{-in\theta} d\theta = 2\pi \sum_{n=0}^{\infty} |c_n|^2 r^{2n}.$$

This shows the claimed equality. The stated inequality is obtained by the standard estimate of the integral. $\hfill \Box$

Theorem 2.33 (Maximum Modulus Principle). Let $D \subseteq \mathbb{C}$ be a region and $f \in \mathcal{O}(D)$. Suppose that |f| has a local maximum at some point $z \in D$, i.e., that $|f(z)| = ||f||_U := \sup_{\zeta \in U} |f(\zeta)|$ for some neighborhood $U \subseteq D$ of z, then f is constant.

Proof. Given a point $z \in D$ and a neighborhood U of z as described, consider the power series expansion $f(\zeta) = \sum_{n=0}^{\infty} c_n (\zeta - z)^n$ of f around z. Let $\rho > 0$ such that $\overline{B_{\rho}(z)} \subseteq U$. Then, the power series converges with radius at least ρ and for $0 < r < \rho$ we have, by Lemma 2.32,

$$\sum_{n=0}^{\infty} |c_n|^2 r^{2n} \le M(r)^2 \le \|f\|_U^2 = |f(z)|^2 = |c_0|^2.$$

This implies $c_k = 0$ for all $k \in \mathbb{N}$, i.e., f is constant in $B_{\rho}(z)$. But then the Identity Theorem (Theorem 2.29) ensures that f is constant in all of D. \Box

Proposition 2.34. Let $D \subseteq \mathbb{C}$ be a bounded region and K its closure. Suppose $f: K \to \mathbb{C}$ is continuous and its restriction to D is holomorphic. Then,

$$|f(z)| \le ||f||_{\partial D} \quad \forall z \in D.$$

In case of equality for some $z \in D$, f is constant.

Proof. If f is constant the inequality is an equality and is valid trivially. Thus, suppose that f is not constant. Since K is compact and f is continuous on K there exists a point $z \in K$ such that $|f(z)| = ||f||_K$. We have to show that necessarily $z \in \partial D = K \setminus D$. Assume to the contrary that $z \in D$. Since $|f(z)| = ||f||_K = ||f||_D$ we can apply Theorem 2.33 with U = D, concluding that f is constant, a contradiction.

Theorem 2.35 (Liouville Theorem). Every bounded entire function is constant.

Proof. Let $f \in \mathcal{O}(\mathbb{C})$ be bounded by M, i.e., $|f(z)| \leq M$ for all $z \in \mathbb{C}$. Since f is analytic in \mathbb{C} and its power series $f(z) = \sum_{n=0}^{\infty} c_n z^n$ around 0 has infinite radius of convergence. Thus, for a radius r > 0 we have from Lemma 2.32 the estimate,

$$\sum_{n=0}^{\infty} |c_n|^2 r^{2n} \le M(r)^2 \le M^2.$$

Since r can be arbitrarily large, this implies $c_k = 0$ for all $k \in \mathbb{N}$.

Exercise 19. Let $D \subseteq \mathbb{C}$ a region, $a \in D$. Suppose that $f \in \mathcal{O}(D \setminus \{a\})$. Show that f has a holomorphic extension to D if f' has. Robert Oeckl – CA NOTES 4 - 01/10/2009

Exercise 20. Suppose f is an entire function which satisfies

$$|f(z)| \le a + b|z|^c \,\forall z \in \mathbb{C},$$

where a, b, c are positive constants. Show that f is a polynomial of degree less than or equal to c.

Exercise 21. Let f be an entire function. Show that the Taylor series of f at 0 converges uniformly in all of \mathbb{C} if an only if f is a polynomial.

Exercise 22. Let f, g be entire functions satisfying $|f(z)| \leq |g(z)|$ for all $z \in \mathbb{C}$. Show that there is $a \in \mathbb{C}$ such that f = ag.

Exercise 23. Let $D \subseteq \mathbb{C}$ be a region and $L \subset \mathbb{C}$ be a straight line. Let $f: D \to \mathbb{C}$ be continuous and f holomorphic in $D \setminus L$. Show that f is actually holomorphic in all of D.

Exercise 24. Let $D \subseteq \mathbb{C}$ be a region and $f \in \mathcal{O}(D)$. Suppose that there exists $z \in D$ such that $f^{(n)}(z) = 0$ for almost all $n \in \mathbb{N}$. Show that f is a polynomial.

Exercise 25. Let $D \subseteq \mathbb{C}$ be a region such that if $z \in D$ then $\overline{z} \in D$. Show that for $f \in \mathcal{O}(D)$ the following statements are equivalent:

- 1. $f(D \cap \mathbb{R}) \subseteq \mathbb{R}$.
- 2. $f(\overline{z}) = \overline{f(z)}$ for all $z \in D$.

Exercise 26. For each of the following properties give an example for a holomorphic function defined in some disk around 0 with that property or show that there can be no such function.

- 1. $f(1/n) = (-1)^n/n$ for almost all $n \in \mathbb{N}$.
- 2. $f(1/n) = 1/(n^2 1)$ for almost all $n \in \mathbb{N} \setminus \{1\}$.
- 3. $|f^{(n)}(0)| \ge (n!)^2$ for almost all $n \in \mathbb{N}_0$.
- 4. $|f(1/n)| \leq e^{-n}$ for almost all $n \in \mathbb{N}$ and $f \neq 0$.

2.5 The Open Mapping Theorem

Definition 2.36. Let X, Y be topological spaces. A map $f : X \to Y$ is called *open* iff for every open set $U \subseteq X$ the image f(U) is open in Y.

Proposition 2.37 (Minimum Principle). Let $D \subseteq \mathbb{C}$ be a region and $f \in \mathcal{O}(D)$. Suppose that |f| has a local minimum at some point $z \in D$, i.e., that $|f(z)| = \inf_{\zeta \in U} |f(\zeta)|$ for some neighborhood $U \subseteq D$ of z. Then, f(z) = 0 or f is constant in D.

Proof. Let $z \in D$ be a local minimum and U a neighborhood of z as described. Without loss of generality we may assume that U is connected, i.e. a region. If f(z) = 0 we are done. Thus, suppose $f(z) \neq 0$. Since z is local minimum of |f| in U, $f(\zeta) \neq 0$ for all $\zeta \in U$. So, $1/f \in \mathcal{O}(U)$. But |1/f| has a local maximum at z and we may apply Theorem 2.33 to conclude that 1/f is constant in U. But then f is constant in U and by Theorem 2.29 constant in D.

Proposition 2.38. Let $D \subseteq \mathbb{C}$ be a bounded region and K its closure. Suppose $f: K \to \mathbb{C}$ is continuous and its restriction to D is holomorphic. Then, either f has zeros in D or

$$|f(z)| \ge \inf_{\zeta \in \partial D} |f(\zeta)| \quad \forall z \in D.$$

Proof. Exercise.

Lemma 2.39. Let $D \subseteq \mathbb{C}$ be a region and $f \in \mathcal{O}(D)$. Let $z \in D$ and r > 0 such that $\overline{B_r(z)} \subset D$ and $2\delta := \inf_{\zeta \in \partial B_r(z)} |f(\zeta) - f(z)| > 0$. Then, $B_{\delta}(f(z)) \subseteq f(B_r(z))$.

Proof. Let $a \in B_{\delta}(f(z))$. Then,

$$|f(\zeta) - a| \ge |f(\zeta) - f(z)| - |a - f(z)| > \delta \quad \forall \zeta \in \partial B_r(z).$$

In particular, $\inf_{\zeta \in \partial B_r(z)} |f(\zeta) - a| > |f(z) - a|$. Thus, by Proposition 2.38 f - a must have zeros in the region $B_r(z)$. That is, there exists $\xi \in B_r(z)$ such that $f(\xi) = a$.

Theorem 2.40 (Open Mapping Theorem). Let $D \subseteq \mathbb{C}$ be a region and $f \in \mathcal{O}(D)$ such that f is not constant. Then f is an open map $D \to \mathbb{C}$.

Proof. Let $U \subseteq D$ be open. Let $z \in U$. It is enough to show that f(U) contains a disc centered around f(z). Since f is not constant, by the Identity Theorem (Theorem 2.29) there is a radius r > 0 such that $f(z) \notin f(\partial B_r(z))$ while $B_r(z) \subseteq U$. Then $2\delta := \inf_{\zeta \in \partial B_r(z)} |f(\zeta) - f(z)| > 0$ and Lemma 2.39 can be applied, showing that $B_{\delta}(f(z)) \subseteq f(B_r(z)) \subseteq f(U)$. \Box

2.6 General Cauchy Theory

We have already seen that the index $\operatorname{Ind}_{\gamma}(z)$ of a point z with respect to a path γ is zero, if z lies in the connected component of $\mathbb{C} \setminus |\gamma|$ which is unbounded. This motivates the following definition.

Definition 2.41. Let γ be a closed path in \mathbb{C} . We define the *interior* of γ as the subset $\operatorname{Int}_{\gamma} := \{z \in \mathbb{C} \setminus |\gamma| : \operatorname{Ind}_{\gamma}(z) \neq 0\}$. Similarly, we define the *exterior* of γ as the subset $\operatorname{Ext}_{\gamma} := \{z \in \mathbb{C} \setminus |\gamma| : \operatorname{Ind}_{\gamma}(z) = 0\}$.

Obviously, we have the disjoint union $\mathbb{C} = \operatorname{Int}_{\gamma} \cup |\gamma| \cup \operatorname{Ext}_{\gamma}$.

Lemma 2.42. Let $D \subseteq \mathbb{C}$ be a region and γ a closed path in D. Suppose $g: |\gamma| \times D \to \mathbb{C}$ is a continuous function such that $z \mapsto g(\zeta, z)$ is holomorphic for all $\zeta \in |\gamma|$. Then, the function $h: D \to \mathbb{C}$ given by

$$h(z) := \int_{\gamma} g(\zeta, z) \,\mathrm{d}\zeta$$

is holomorphic.

Proof. Fix $z \in D$. Let $U \subseteq D$ be a star-shaped neighborhood of z with center z (e.g. a disc centered at z). Then, for all $\zeta \in |\gamma|$ and all paths $\tilde{\gamma}$ in U we have,

$$\int_{\tilde{\gamma}} g(\zeta, z) \, \mathrm{d}z = 0,$$

by Proposition 2.11 since $z \mapsto g(\zeta, z)$ is holomorphic and thus integrable in U by Corollary 2.15. But we can interchange the order of integration by Fubini's Theorem to get

$$\int_{\tilde{\gamma}} h(z) \, \mathrm{d}z = \int_{\tilde{\gamma}} \left(\int_{\gamma} g(\zeta, z) \, \mathrm{d}\zeta \right) \, \mathrm{d}z = \int_{\gamma} \left(\int_{\tilde{\gamma}} g(\zeta, z) \, \mathrm{d}z \right) \, \mathrm{d}\zeta = 0.$$

Thus, h is integrable in U by Proposition 2.11 and therefore holomorphic in U by Corollary 2.23. Since z was arbitrary, h is holomorphic in D.

Theorem 2.43. Let $D \subseteq \mathbb{C}$ be a region and γ a closed path in D. Then, the following conditions are equivalent:

1. All $f \in \mathcal{O}(D)$ satisfy

$$\int_{\gamma} f = 0.$$

2. For every $f \in \mathcal{O}(D)$ and every $z \in D \setminus |\gamma|$ we have,

$$f(z)$$
Ind _{γ} $(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta.$

3. Int_{γ} $\subset D$.

Proof. To show $2 \Rightarrow 1$. for a given $f \in \mathcal{O}(D)$, choose $z \in D \setminus |\gamma|$ arbitrarily and define $h \in \mathcal{O}(D)$ via $h(\zeta) := (\zeta - z)f(\zeta)$. Applying the formula of 2. to h yields 1. since h(z) = 0 by construction.

We proceed to show $1 \Rightarrow 3$. If $D = \mathbb{C}$ there is nothing to demonstrate. So assume the contrary and let $z_0 \in \mathbb{C} \setminus D$. We have to demonstrate that $\operatorname{Ind}_{\gamma}(z_0) = 0$. Define $f \in \mathcal{O}(D)$ via $f(z) := (z - z_0)^{-1}$. By 1.,

$$0 = \int_{\gamma} f = 2\pi \mathrm{i} \operatorname{Ind}_{\gamma}(z_0).$$

It remains to demonstrate $3 \Rightarrow 2$. Define the function $g: D \times D \to \mathbb{C}$ as follows,

$$g(\zeta, z) := \begin{cases} \frac{f(\zeta) - f(z)}{\zeta - z} & \text{if } \zeta \neq z\\ f'(z) & \text{if } \zeta = z \end{cases}.$$

We proceed to show that g is continuous. For $(\zeta, z) \in D \times D$ such that $\zeta \neq z$ this is immediate. Thus, consider the case $\zeta = z$ and fix $z \in D$. Let r > 0 such that $B_r(z) \subset D$. Consider the power series expansion of f around z,

$$f(\zeta) = \sum_{n=0}^{\infty} c_n (\zeta - z)^n,$$

for all $\zeta \in B_r(z)$. Then, for $\zeta, \xi \in B_r(z)$,

$$g(\zeta,\xi) = f'(z) + \sum_{n=2}^{\infty} c_n \sum_{k=1}^{n} (\zeta - z)^{n-k} (\xi - z)^{k-1}.$$

For $\zeta, \xi \in B_{\rho}(z)$ with $0 < \rho < r$ we have thus the estimate,

$$|g(\zeta,\xi) - g(z,z)| \le \left|\sum_{n=2}^{\infty} c_n \sum_{k=1}^{n} (\zeta-z)^{n-k} (\xi-z)^{k-1}\right| \le \sum_{n=2}^{\infty} n |c_n| \rho^{n-1}.$$

However, the series on the right hand side converges for all $\rho < r$ to a continuous function which goes to 0 when $\rho \to 0$. Thus, g is continuous at (z, z). Since z was arbitrary in D this completes the proof that g is

Robert Oeckl – CA NOTES 4 - 01/10/2009

continuous in $D \times D$. Now we apply Lemma 2.42 to conclude that the function $h: D \to \mathbb{C}$ defined by

$$h(z) := \int_{\gamma} g(\zeta, z) \,\mathrm{d}\zeta$$

is holomorphic in D.

Now observe that for $z \in D$ we have

$$h(z) = \int_{\gamma} g(\zeta, z) \, \mathrm{d}\zeta = -2\pi \mathrm{i} f(z) \mathrm{Ind}_{\gamma}(z) + \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta.$$

Thus, to show 2. we need to show that h = 0. But if $z \in D \cap \text{Ext}\gamma$, then $\text{Ind}_{\gamma}(z) = 0$ and we get

$$h(z) = \int_{\gamma} \frac{f(\zeta)}{\zeta - z} \,\mathrm{d}\zeta.$$

However, this formula actually defines a holomorphic function in all of $\operatorname{Ext}\gamma$ by Lemma 2.21. Thus, we use it to extend h to a holomorphic function on the open set $D \cup \operatorname{Ext}\gamma$. Now recall that the assumption is that $\operatorname{Int}\gamma \subset D$. But this means $D \cup \operatorname{Ext}\gamma = \mathbb{C}$, i.e. h is entire. Exercise.Complete the proof. [Hint: Use Liouville's Theorem].